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Spectral Domain Analysis of Dominant and
Higher Order Modes in Fin-Lines

LORENZ-PETER SCHMIDT anDp TATSUO ITOH, SENIOR MEMBER, IEEE

Abstract-—The spectral domain analysis is applied for deriving disper-

n characteristics of dominant and higher order modes in fin-line struc-
tures. In addition to the propagation constant, the characteristic impedance
is calculated based on the power—voltage definition. Numerical results are
compared for different choices of basis functions and allow to estimate the
accuracy of the solution.

I. INTRODUCTION

HE FIN-LINE structure is a special printed transmis-
sion line proposed for millimeter wave integrated
circuits in 1973 by Meier [1]. Since then, a number of
millimeter-wave components have been developed in the
fin-line form (e.g., [2]). The single-mode range of frequency
is relatively wide, as the fin-line somewhat resembles the
ridged waveguide. Propagation characteristics of fin-line
structures have been investigated by a number of workers
such as Hofmann [3]), Hoefer [4], [5], and Saad and
Begemann [10]. In [3], which is based on Galerkin’s method
in the space domain, sinusoidal functions are used as
expansion functions. Hence a comparatively large number
of expansion functions is required to obtain accurate
results and, in addition, relative convergence problems
occur and have to be handled carefully. On the other
hand, some engineering approximations are involved in
the work in [4].
In the present paper, fin-line structures are analyzed
using the spectral domain technique, which has been
developed for the analysis of various printed transmission
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lines for microwave integrated circuits [6], [7]. In this
method, the information on the propagation constant at a
given frequency is extracted from algebraic equations that
relate Fourier transforms of the currents on the fins to
those of the electric field in the dielectric—air interface.
These equations are discrete Fourier transforms' of cou-
pled integral equations one would obtain if the formula-
tion is done in the space domain. Obviously, algebraic
equations are much easier to handle in numerical process-
ing. In addition to standard features of the spectral do-
main technique, the present work contains the following
provisions.

1) The accuracy of the method is checked by comparing
results obtained from three different choices of basis
functions. A convergence check is also performed by
increasing the number of basis functions for one of these
sets,

2) In addition, dispersion curves for higher order modes
are presented. For practical applications, the knowledge
of higher order modes is important, because often a single
mode operation is required.

3) Another important quantity for design purposes is
the characteristic impedance of the dominant mode. By
applying a definition suitable to fin-line structures, useful
results for the characteristic impedance could be obtained
and are presented in this paper.

II. FORMULATION OF THE EIGENVALUE PROBLEM

Since the details of the spectral domain method itself
have been reported in [6] and [7], only the key steps will
be given here. The method of using alternative sets of
basis functions for accuracy checks has recently been

"Henceforth referred to as Fourier transform.
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Fig. 1. Bilateral fin-line. (a) Cross section. (b) Equivalent structure.

employed for a higher order mode analysis of microstrip
lines [8]. The significance of the modifications will be
pointed out in this paper.

Several versions of fin-lines have been proposed, includ-
ing bilateral, unilateral, and antipodal fin arrangements.
Although the present method is applicable to other types
of fin-line structures, we will formulate the problem for
the bilateral fin-line, the cross section of which is shown
in Fig. 1(a). Because of the symmetry, we only need to
consider the half-structure given in Fig. 1(b).

Since the modal field in the fin-line is of hybrid type,
the fields in regions 1 (dielectric) and 2 (air) can be
derived from two scalar potentials ¢,(x, y) and y,(x, y),
i=1,2, for instance

2_p2

: ’B'B ¢:(x, )

E,=j

z

(M

Kk}
H,,=j

z

B (xy) @

B
where i=1,2 signifies the region, k; is the wavenumber in
region i, and B is the propagation constant of the mode in
the z direction. The time and z dependence of the field
exp( jwt—jBz) is omitted throughout the paper. All other
field components are derivable from Maxwell’s equations.

In the spectral domain approach, the potentials ¢; and
Y, as well as all the field quantities are Fourier trans-
formed via

d(ny)= [ e ep(fx)dx Q)

where k =nw/b for all odd (in E,) modes including the
dommant one and k,=(n—1/ 2)77/ b for the even modes.
qs,(n y) and xp (n, y) now satisfy Helmholtz equations,

€.8.
d2
(5

K2+ B%—e k3 K2+pB2—k2

and k&, is the free space wavenumber. Since the tangential

Yi ) $(n,y)=0 4)

where
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electric fields E,, and E,, must be zero at y=a,|x|<b,
and the tangential magnetic fields H,, and H,, be zero at
y=0,|x| < b, appropriate solutions to the above equations
are

<'Z>,(n,y)=Af;coshyly &2(n,y)=B,fsinhy2(a—y)

y\(n, y)=Alsinhy;y  §,(n, y)=B"coshy,(a—y).

By applying the interface conditions at y=d, the un-
known coefficients 42, A%, B?, and B} can be eliminated,
and we obtain two coupled algebraic equations

Yoo Bt Y, B =jonod, ©)
szEx+ Y E '—jw)u‘OJ; (6)
where

tanhy cothy, A

Y, =(e,k3—B*)— +(k<2>—l32)—y2—2 ™
. { tanhvy,d thy,h
sz=ﬂk,,( “ong ) ®)
Y1 Y2

-, tanhy,d R thy, h

Y, =(ekd—£2) =S+ (£ =1 (9)
1 2

h=a-d

all are known. Ex, E., and J,, J, are Fourier transforms of
the unknown tangential electric field in the gap (y=4d,|x|
<s) and the unknown current components on the fins
(y=d, s<|x|<b). Up to this stage the method of analysis
is exact. In the following we present a solution based on
Galerkin’s method.

To this end, the unknown aperture fields £, and E; are
expanded in terms of known basis functions £,, 7,

E~x(’€n)= ‘gl Cigi(]én) (10)
~ S N -
E(k,)= gl d;i (k,) (11)

where zi and 1), are Fourier transforms of £,(x) and n,(x),
which are chosen to be zero except for | x| <s.

Now (10) and (11) are substituted into (5) and (6) and
the inner products of the resulting equations with é,. and
7;, Tespectively, are obtained. This results in a homoge-
neous matrix equation for the unknown expansion coeffi-
cients ¢; and d,

ZK;,XC, ZK;;dJ:O, p=1,---.M (12

i=1

.EK;fc,+2K”d =0, g=1,---,N (13)
where

K= Zsp(k) (B, Kk, )E(K,) (14a)

K= 3 (6B R)i(R) (4
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Fig. 2. Basis functions used for slot-field expansion (corresponding to

(15)-(20)).

K;f= goﬁq(len)yzx(ﬁ’ Ien)ét(len) (14C)

K= Eoﬁq(k‘,.)n,(ﬁ, E)ifk).  (14d)

Equating the determinant of the coefficient matrix associ-
ated with (12) and (13) to zero, we finally obtain the
eigenvalue equation, and its solutions are the desired
propagation constants of the dominant and higher order
modes.

III.

One of the features of the spectral domain method
applied in the described manner is that quite accurate
solutions result even if an extremely small size matrix such
as M=N=1 is used. This takes place because certain
qualitative natures such as the edge condition of the
aperture electric field can be incorporated in the choice of
basis functions.

In the present case three different choices of basis
functions have been used, all of them being readily Four-
ier transformed analytically.

1) Qualified one-term expansions satisfying the edge
condition at |x|=s (see Fig. 2(a)):

£i(x) = ————
3

s2—x

CHOICES OF Basis FUNCTIONS

(15)

2-x2.

(16)

2) Trains of rectangular pulses with unknown ampli-
tudes (Fig. 2(b)):

m(x)=xVs

£,-(x)={ 1, (i—D-Ax<|x|<i-Ax (17)
0, elsewhere

1, (J—D-Ax' <x<j-Ax’
n(x)=4 -1, —j Ax’'<x<(j-1)-Ax" (18)

0, elsewhere
and Ax=s/M, Ax’'=s/N.
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3) Sinusoidal functions modified by an “edge condition”
term (Fig. 2(c)):

cos{(i—1D)m(x/s+1)}

§i(x)= (19)
\/1 —(x/s)*
ny(x) = sin{ jm(x/s+1)} . (20)

vl—(x/s)2

The second set of basis functions is numerically less
advantageous than the others, because it requires an in-
herently larger matrix order, and the edge condition can-
not be direcily incorporated. However, it is very flexible
and general and the expansion coefficients c;, d; are ad-
justed automatically to represent the aperture field distrib-
utions.

1V. THE CHARACTERISTIC IMPEDANCE

In addition to the propagation constants of the propa-
gating modes, the characteristic impedance of the domi-
nant mode is an important quantity for the design of
microwave and millimeter-wave integrated circuits. Three
definitions are possible for the impedance Z_: they are
V./I, 2P/I* and V?/(2P) where P is the transmitted
power, V, the slot voltage, and I the current on the fins
and waveguide walls. For reasons pointed out earlier [9],
an impedance definition via slot voltage and transported
power

& ,
=GP 1)
was applied to the bilateral fin-line considered here. The
calculation of the slot voltage

+
V= [ Efx,d)dx

—-s

(22)

can directly be accomplished, since the x dependence of
the integral is known from the slot-field series expansion.
The expansion coefficients ¢; and d; result from inverting
the eigenvalue matrix equation, after the propagation con-
stant has been computed. The transported power

+b ra
P=Re f_b fo (E H*—E, H*)dydx (23)
can be transformed to the spectral domain using Parseval’s
theorem

P=Re [(E.f*—E A*)ay . (24)
[(E.A:-E,A2)

0
Since the spectral field components have already been
derived in the course of formulating the eigenvalue prob-
lem, this integral can directly be solved and, thus, the
calculation of the characteristic impedance completed.

It should be noted that the impedance defined in (21)-
(24) is for one half of the bilateral fin-line in Fig. 1(b). The
impedance thus defined may be called the one associated
with one of the slots. The total impedance is one half of
the values computed by the definition above, because the
total power is twice that of (23); whereas, V, given by (22)
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Fig. 3, Dispersion characteristics of dominant and first higher order
mode and characteristic impedance of dominant mode. (200 spectral
terms). (a) 25=0.15 mm. (b) 25=0.50 mm.——one-term expansion
according to (15), (16), respectively, (19), (20), and M=N=1. -----
two-term expansion according to (19), (20) and M=N=2. (Indis-
tinguishable from ——in (a)). A A expansion with rectangular pulses
according to (17), (18) and M=N=7. X X Hofmann’s results [3]. o
Impedance by Hofmann [3]. —-— Characteristic impedance for M=N
=1 and 2.

is identical to both slots. It is readily shown that total
impedances based on other definitions are also one half of
those for one slot.

V. NuMEeRICAL RESULTS

Dispersion characteristics for different choices of basis

functions have been computed, including the effective:

dielectric constant €.,=p?/k? of the dominant and the
first higher order mode and the characteristic impedance
Z, of the dominant mode (Fig. 3). Note that this defini-
tion of e, is different from the one used in [1]. The latter
provides information as to what kind of effects the dielec-
tric substrate has in reference to the air-filled fin-line. Our
present definition is simply square of the normalized
propagation constant and hence, €., here compares the
guided wave in the structure with the plane wave in free
space. Since the fin-line is not a quasi-TEM waveguide,
the present e, may be less than unity. This definition has
also been used by Hofmann [3] and Jansen [9].

The dimensions of the shielding walls were chosen to
coincide with the WR-28 waveguide usually utilized for
26.5 to 40-GHz operation. It is clearly seen that the
dominant fin-line mode is not quasi-TEM but resembles
somewhat the ridged waveguide dominant mode as pointed
out earlier [1], [4].
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Fig. 4. Convergence behavior of (a) effective dielectric constant, and
(b) characteristic impedance for M=N=1,2,3. (Expansion according
to (19), (20); reference value: NF=500, M =N=4; f=30 GHz; ¢,=3).

Comparing the results for different sets of basis func-
tions, a good conformity of all solutions can be testified
for a small slotwidth. For broader slots (Fig. 3(b)), how-
ever, a one-term expansion results in relative errors of up
to 2 percent. This fact is confirmed in Fig. 4, where the
convergence behavior of e and Z_ is presented for one-,
two-, and three-term expansions and a varying number of
spectral terms. The solution for e, using a one-term
expansion, obviously deviates about 2 percent from the
reference value for a broad slot, whereas, the deviation of
Z. is not so significant. Further investigations have shown
that for all normally used slotwidths, a two-term expan-
sion according to (19), (20) and a number of 250 spectral
terms are sufficient for very accurate solutions.

Fig. 5 shows modal dispersion characteristics for two
more substrates and several slotwidths. In addition, in
Fig. 5(b) the existence of modes resulting from an electric
wall symmetry at y =0 is pointed out. Though modes with
this kind of symmetry may not be excited by the domi-
nant H,;, mode of the empty waveguide, they have to be
taken into account at all discontinuities that are not
symmetric with respect to the y =0 plane.

Figs. 3 and 5 confirm Hofmann’s statement in {3] that
the characteristic impedance is fairly constant in the
frequency range 30-40 GHz. Additionally these figures
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Fig. 5. Dispersion characteristics of effective dielectric constant and
characteristic impedance for other substrates and different slotwidths
2s. (DM-dominant mode, HM-higher order mode, DM’-dominant
mode for the structure in Fig. 1(b) with magnetic wall replaced by an
electric wall).

show a broad minimum of Z, in this frequency range.
Since we found that this phenomenon, which was not
observed in Hofmann’s work [3], is not due to numerical
instability or convergence, we conjecture as follows. The
main tendency of increasing impedance at higher frequen-
cies can be interpreted with the help of the fact that the
fields concentrate more and more in the vicinity of the
slot as the frequency gets higher. This results in higher
values of slot voltage V, if the power P is set constant.
Hence, Z,=V2/(2P) becomes larger. Near the cutoff,
however, another mechanism takes place. Since the power
transmitted P in the z direction is zero at cutoff, Z,
becomes infinite. Since this cannot happen discontinu-
ously, Z, takes higher values again as the cutoff is ap-
proached, resulting in a broad minimum at intermediate
frequencies. Since Hofmann [3] takes only the current on
the fins into account in his definition Z_ =V, /I, a differ-
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ent mechanism takes place for his impedance. At higher
frequencies, the fin current increases as the fields con-
centrate near the slot, and the portion of current flowing
on the waveguide walls decreases. Since the latter is ne-
glected, Hofmann’s impedance decreases at higher fre-
quencies.

Hofmann’s impedance values plotted in the figure are
twice those found in his original paper. This is because he
used the total impedance described earlier. Even after this
factor of two is introduced, Hofmann’s results deviate
considerably from the present data. The deviations may
be due to the fact that he used an impedance definition
via slot voltage and fin current which seems to be ques-
tionable for broader slots, because the portion of the
current on the waveguide wall which is neglected in his
analysis becomes more important.

VL

Derived from a thorough dynamic spectral domain
analysis, a wide variety of useful information about the
bilateral fin-line has been given in this paper, including
important aspects for practical application, as well as
theoretical considerations about suitable choices of basis
functions and the convergence behaviors of the solutions.
Obviously, this method is applicable to other fin-line
configurations as well.

CONCLUSIONS
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