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Spectral Domain Analysis of Dominant and
Higher Order Modes in Fin-Lines

LORENZ-PETER SCHMIDT AND TATSUO ITOH[, SENIOR ~MBER, IEEE

Abstnrct-The spectraf domain aoalysfe is appfied for derivfng dfsper-

L n ekRcMsUaJ of dmnfnant and higher order modes fn ffn-ffne struc-
tures. fit addition to the propagation conatan~ the characterfatic fmpedance
fs ad- baaed on the power-voltage defioftfon. Nurnerfcaf reauk are

CO- f~ dfffmnt cfwk of tifs funetfons and auow to estimate the
aecumey of the solution.

I. INTRODUCTION

T HE FIN-LINE structure is a special printed transmis-

sion line proposed for millimeter wave integrated

circuits in 1973 by Meier [1]. Since then, a number of

millimeter-wave components have been developed in the

fin-line form (e.g., [2]). The single-mode range of frequency

is relatively wide, as the fin-line somewhat resembles the

ridged waveguide. Propagation characteristics of fin-line

structures have been investigated by a number of workers

such as Hofmann [3], Hoefer [4], [5], and Saad and

Begemann [10]. In [3], which is based on Galerkin’s method

in the space domain, sinusoidal functions are used as

expansion functions. Hence a comparatively large number

of expansion functions is required to obtain accurate

results and, in addition, relative convergence problems

occur and have to be handled carefully. On the other

hand, some engineering approximations are involved in

the work in [4].

In the present paper, fin-line structures are analyzed

using the spectral domain technique, which has been

developed for t~e analysis of various printed transmission
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lines for microwave integrated circuits [6], [7]. In this

method, the information on the propagation constant at a

given frequency is extracted from algebraic equations that

relate Fourier transforms of the currents on the fins to

those of the electric field in the dielectric– air interface.

These equations are discrete Fourier transforms* of cou-

pled integral equations one would obtain if the formula-

tion is done in the space domain. Obviously, algebraic

equations are much easier to handle in numerical process-

ing. In addition to standard features of the spectral do-

main technique, the present work contains the following

provisions.

1) The accuracy of the method is checked by comparing

results obtained from three different choices of basis

functions. A convergence check is also performed by

increasing the number of basis functions for one of these

sets,

2) In addition, dispersion curves for higher order modes

are presented. For practical applications, the knowledge

of higher order modes is important, because often a single

mode operation is required.

3) Another important quantity for design purposes is

the characteristic impedance of the dominant mode. By

applying a definition suitable to fin-line structures, useful

results for the characteristic impedance could be obtained

and are presented in this paper.

II. FORMULATION OF THE EIGENVALUE PROBLEM

Since the details of the spectral domain method itself

have been reported in [6] and [7], only the key steps will
be given here. The method of using alternative sets of

basis functions for accuracy checks has recently been

1Henceforth referred to as Fourier transform.
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Fig. L Bilateral fin-line. (a) Cross section. (b) Equivalent structure.

employed for a higher order mode analysis of microstrip

lines [8]. The significance of the modifications will be

pointed out in this paper.

Several versions of fin-lines have been proposed, includ-

ing bilateral, unilateral, and antipodal fin arrangements.

Although the present method is applicable to other types

of fin-line structures, we will formulate the problem for

the bilateral fin-line, the cross section of which is shown

in Fig. l(a). Because of the symmetry, we only need to

consider the half-structure given in Fig. l(b).

Since the modal field in the fin-line is of hybrid type,

the fields in regions 1 (dielectric) and 2 (air) can be

derived from two scalar potentials @i(x, y) and +i(x, y),

i = 1,2, for instance

~2_ Q2

Ezi=j~ BP Oi(x, Y) (1)

(2)

where i= 1,2 signifies the region, k, is the wavenumber in

region i, and ~ is the propagation constant of the mode in

the z direction, The time and z dependence of the field

exp( j~t –j~z ) is omitted throughout the paper. All other

field components are derivable from Maxwell’s equations.

In the spectral domain approach, the potentials +, and

+, as well as all the field quantities are Fourier trans-

formed via

ii(n, Y)= J~b@j(x,y)exp(jtnx)dx (3)

where in= nmjb for all odd (in E=) modes including the

dominant one and ~.= (n – 1/2)~/b for the even modes.

&i(n, y) and ~i(n, y) now satisfy Hehnholtz equations,

e.g.,

()dz
‘–Y: $,(n, Y)=O
42

(4)

where

“T y,=-Y1– k.+p –~rko

and k. is the free space wavenumber. Since the tangential

electric fields EZ2 and EX2 must be zero at y = a, Ix I < b,

and the tangential magnetic fields HZI and HX1 be zero at

Y = O,Ix \ < b, appropriate solutions to the above equations
are

?](~,y)=~;coshyly $z(n, y)=%sinhyz(a–y)

il(n, y)=~!sinhyly i2(njy)=B~coshy2 (a–y).

By applying the interface conditions at y= d, the un-

known coefficients A;, A:, B:, and B; can be eliminated,

and we obtain two coupled algebraic equations

YXX&+ YXZI?Z=jupO;’ (5)

YzI~X + ~zl?z =japO~ (6)

where

tanhyld
YXX=(e,k; –/12) Y1 +(k~–~2) cot;:~ (7)

(

tanh yld
Yxz= %x = Bin

coth yz h
+

Yl Y2 )

tanh yl d
Y=== (~,k;–~;) Y1 +(k; –t~) Cot;flh (9)

(8)

h=a–d

all are known. ~X, ~=, and ~X, ~ are Fourier transforms of

the unknown tangential electric field in the gap (y= d, Ix I

<s) and the unknown current components on the fins

(Y= d,s <IX I <b). Up to this stage the method of analysis
is exact. In the following we present a solution based on

Galerkin’s method.

To this end, the unknown aperture fields ~X and ~z are

expanded in terms of known basis functions $,, iji

(10)

(11)

where ~i and fiJ are Fourier transforms of ~i(x) and qj(x),

which are chosen to be zero except for Ix I <s.

Now (10) and (11) are substituted into (5) and (~) and

the inner products of the resulting equations with (i and

ijj, respectively, are obtained. This results in a homoge-

neous matrix equation for the unknown expansion coeffi-

cients c, and dj

M N

~ K;;ci+ ~ K;;dJ=O, p=l,..., M
i=l J=l

where

(12)

(13)

(14a)

(14b)
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Fig. 2. Basis functions used for slot-field expansion (corresponding to
(15)-(20)).
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Equating the determinant of the coefficient matrix associ-

ated with (12) and (13) to zero, we finally obtain the

eigenvalue equation, and its solutions are the desired

propagation constants of the dominant and higher order

modes.

111, CHOICES OF BASIS FUNCTIONS

One of the features of the spectral domain method

applied in the described manner is that quite accurate

solutions result even if an extremely small size matrix such

as M= N = 1 is used. This takes place because certain

qualitative natures such as the edge condition of the

aperture electric field can be incorporated in the choice of

basis functions.
In the present case three different choices of basis

functions have been used, all of them being readily Four-

ier transformed analytically.

1) Qualified one-term expansions satisfying the edge

condition at ]x I =s (see Fig. 2(a)):

f,(x)= 1
l/F=2

(15)

TAX)= X”VS2-X2 . (16)

2) Trains of rectangular pukes with unknown ampli-

tudes (Fig. 2(t)):

(i–1).Ax<[xl<i.Ax
(17)ti(x) = ( ~~ elsewhere

[

1, (j–l)oAx’<x<.j.Ax’

nj(~)= – 1, –j. Ax’<x<(j–l). Ax’ (18)

o, elsewhere

and Ax =s/ikf, Ax’ =s/N.

3) Sinusoidal functions modified by an “edge condition”

term (Fig. 2((c)):

.$,(X)=
cos{(i–l)T(x/s+ l)}

m

(19)

sin{jm(x/s+ 1)}
qj(x)=

w“

(20)

The second set of basis functions is numerically less

advantageous than the others, because it requires an in-

herently larger matrix order, and the edge condition can-

not be directly incorporated. However, it is very flexible

and general and the expansion coefficients c,, dj are ad-

justed automatically to represent the aperture field distrib-

utions.

IV. THE CHARACTERISTIC IMPEDANCE

In addition to the propagation constants of the propa-

gating modes, the characteristic impedance of the dmni-

nant mode is an important quantity for the design of

microwave and millimeter-wave integrated circuits. Three

definitions are possible for the impedance ZC: they are

VX/l, 2P/Iz’, and V../(2P) where P is the transmitted

power, V-.Xthe slot voltage, and 1 the current on the fins

and waveguide walls. For reasons pointed out earlier [9],

an impedance definition via slot voltage and transpo~led

power

~:

‘c- (2P)
(21)

was applied to the bilateral fin-line considered here. The

calculation of the slot voltage

VX=~ ‘sJ?X(X, d)dx (22)
—s

can directly be accomplished, since the x dependence of

the integral is known from the slot-field series expansion.

The expansicm coefficients Ci and dj result from inverting

the eigenvalue matrix equation, after the propagation con-

stant has been computed. The transported power

p= Ref_:bJa(EXH; –EyH:)dydx (23)

can be transformed to the spectral domain using Parseval’s

theorem

(24)

Since the spectral field components have already been

derived in the course of formulating the eigenvalue prob-

lem, this integral can directly be solved and, thus, the

calculation of the characteristic impedance completed.

It should be noted that the impedance defined in (21)-

(24) is for one half of the bilateral fin-line in Fig. l(b). The

impedance thus defined may be called the one associated

with one of the slots. The total impedance is one half of

the values computed by the definition above, because the

total power is twice that of (23); whereas, VX given by (22)
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is identical to both slots. It is readily shown that total

impedances based on other definitions are also one half of

those for one slot.

V. NUMERICAL RESULTS

Dispersion characteristics for different choices of basis

functions have been computed, including the effective

dielectric constant ●eff= j32/k~ of the dominant and the

first higher order mode and the characteristic impedance

2= of the dominant mode (Fig. 3), Note that this defini-

tion of c~ff is different from the one used in [1], The latter

provides information as to what kind of effects the dielec-
tric substrate has in reference to the air-filled fin-line. Our

present definition is simply square of the normalized

propagation constant and hence, ●.ff here compares the
guided wave in the structure with the plane wave in free

space. Since the fin-line is not a quasi-TEM waveguide,

the present ●eff may be less than unity. This definition has

also been used by Hofmann [3] and Jansen [9].

The dimensions of the shielding walls were chosen to

coincide with the WR-28 waveguide usually utilized for

26.5 to 40-GHz operation. It is clearly seen that the

dominant fin-line mode is not quasi-TEM but resembles

somewhat the ridged waveguide dominant mode as pointed

out earlier [1], [4].
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Comparing the results for different sets of basis func-

tions, a good conformity of all solutions can be testified

for a small slotwidth. For broader slots (Fig. 3(b)), how-

ever, a one-term expansion results in relative errors of up

to 2 percent. This fact is confirmed in Fig. 4, where the

convergence behavior of Ceff and ZC is presented for one-,

two-, and three-term expansions and a varying number of

spectral terms. The solution for c.ff, using a one-term

expansion, obviously deviates about 2 percent from the

reference value for a broad slot, whereas, the deviation of

2= is not so significant. Further investigations have shown

that for all normally used slotwidths, a two-term expan-
sion according to (19), (20) and a number of 250 spectral

terms are sufficient for very accurate solutions.
Fig. 5 shows modal dispersion characteristics for two

more substrates and several slotwidths. In addition, in

Fig. 5(tr) the existence of modes resulting from an electric

wall symmetry at y = O is pointed out. Though modes with

this kind of symmetry may not be excited by the domi-

nant HIO mode of the empty waveguide, they have to be

taken into account at all discontinuities that are not

symmetric with respect to they= O plane.

Figs. 3 and 5 confirm Hofmann’s statement in [3] that

the characteristic impedance is fairly constant in the

frequency range 30–40 GHz. Additionally these figures



SCHMIDTAND ITOH: ANALYSISOF DOMINANTAND HIGHERORDERMODES

2.0

1.5

0,5

0.0

~,p, c, =2,2

{d
a!!!!?!

%o l\\ 015

/)

2d :0 125mm

0.15+ \ \ 03 OM

l\\\ 05 - 500
11
I \ ‘\, ___
\\

I “
\

_- N
_---—

‘.-____ —_ -—---—

__- ——— —
.—____. —

0 20 40 60 80

FREQuENCY (GHz)

(a)

2.0 1
I I

600

jl\
2d=O125mm

1.5

N-
,,

a 1,0G

0.5 ‘w----xc--- A300

-- _____
0.0 r‘“22!!52d200

o 20 40 60 80
FREQUENCY (GHz)

(b)
Fig. 5. Dispersion characteristics of effective dielectric constant and

characteristic inmcdance for other substrates and different slotwidths
2s. (DMdo&t mo&, HiU-higher order mode, DM’-dominant
mode for the structure in Fig. l(b) with magnetic wall replaced by an
electric wall).

show a broad minimum of ZC in this frequency range.

Since we found that this phenomenon, which was not

observed in Hofmann’s work [3], is not due to numerical

instability or convergence, we conjecture as follows. The

main tendency of increasing impedance at higher frequen-

cies can be interpreted with the help of the fact that the

fields concentrate more and more in the vicinity of the

slot as the frequency gets higher. This results in higher

values of slot voltage VX if the power P is set constant.

Hence, Z== V~/(2P) becomes larger. Near the cutoff,

however, another mechanism takes place. Since the power

transmitted P in the z direction is zero at cutoff, ZC

becomes infinite. Since this cannot happen discontinu-

ously, Z= takes higher values again as the cutoff is ap-
proached, resulting in a broad minimum at intermediate

frequencies. Since Hofmann [3] takes only the current on

the fins into account in his definition ZC= VX/l, a differ-
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ent mechanism takes place for his impedance. At higher

frequencies, the fin current increases as the fields con-

centrate near the slot, and the portion of current flowing

on the waveguide walls decreases, Since the latter is ne-

glected, Hoflmann’s impedance decreases at higher fre-

quencies,

Hofmann’s impedance values plotted in the figure are

twice those found in his original paper. This is because he

used the total impedance described earlier. Even after this

factor of two is introduced, Hofmann’s results deviate

considerably from the present data. The deviations may

be due to the fact that he used an impedance definition

via slot voltage and fin current which seems to be ques-

tionable for broader slots, because the portion of the

current on the waveguide wall which is neglected in his

analysis becomes more important,

VI. CONCLUSIONS

Derived from a thorough dynamic spectral domain

analysis, a wide variety of useful information about the

bilateral fin-line has been given in this paper, including

important aspects for practical application, as well as

theoretical considerations about suitable choices of basis

functions and the convergence behaviors of the solutions.

Obviously, this method is applicable to other fin-line

configurations as well,
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